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ABSTRACT 

This thesis investigates optimizing the speed of computation for computing 

the Choi-Williams distribution.  The Choi-Williams distribution is a way of 

simultaneously representing a signal in both the time and frequency domains in a 

fashion that makes it possible to extract the waveform parameters of the signal.  

The Choi-Williams distribution is particularly useful for analyzing low probability of 

intercept signals for electronic intelligence applications.  The usefulness of the 

distribution is directly correlated to the speed of computation.  This thesis 

examines methods in which the Choi-Williams distribution can be modified to 

increase the speed of computation while still maintaining its ability to provide a 

clear picture of the signal characteristics.  By eliminating the computation of near 

zero terms of the Choi-Williams kernel function, the speed of computation can be 

increased dramatically while still preserving, and improving, the time-frequency 

characteristics.  The optimizations developed in this thesis reduced the time to 

compute a 512 sample CWD from 6.9 seconds, to 0.0466 seconds on an Intel 

chip, Linux based PC—an increase in speed of 147X. 
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EXECUTIVE SUMMARY 

Low Probability of Intercept (LPI) emitters are the next evolution in radar 

technology and represent a growing threat to operating forces, civilian targets, 

and national security.  The operational implementation of time-frequency signal 

processing techniques such as the Choi-Williams distribution (CWD) are useful 

for the detection and classification of these threat waveforms. The techniques, 

however, are currently limited due to non-real-time computational constraints.  

Developing a system that can detect and classify LPI emitters in real time is the 

first step in developing countermeasures to this growing threat. 

This thesis investigates developing a highly optimized algorithm for 

computing the Choi-Williams distribution.  Using a C code implementation as a 

benchmark, an increase of over 100X in speed of computation was achieved.  It 

is shown that the optimizations also produce a clearer and more accurate picture 

of the input signal characteristics.  The algorithm developed for this thesis can be 

ported to any platform.  Many of the optimizations developed can be applied to 

the computation of the Wigner-Ville distribution as well.  This work is highly 

applicable in the effort to develop LPI emitter signal detection and classification 

techniques.    

There are currently several signal processing algorithms, which are able to 

provide time/frequency representations of an incoming signal.  These signal 

processing techniques are useful tools in the detection and classification of LPI 

emitters; however, the long processing time it takes to use these techniques 

prevents these techniques from being used in a real time system.  The goal then 

is to decrease the processing time to compute these algorithms. 

The CWD is notable in its ability to provide a clear, human-readable, time-

frequency picture of an LPI signal that is simple to classify.  The ability to 

compute the Choi-Williams algorithm in real or near real time will be a significant 

contribution in developing countermeasures to weapons systems utilizing LPI 

emitters. 
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Several optimizations are presented which can be used to modify the 

Boasash algorithm, reducing the complexity and number of computations made.  

The cumulative effect of utilizing these optimizations produces a hundred fold 

increase in speed of computation of the Choi-Williams distribution.  Some of the 

optimizations made can also be used to increase the speed at which the Wigner-

Ville distribution (another signal processing algorithm) can be computed.  These 

optimizations also have the unintended effect of providing a clearer and more 

accurate picture of an LPI signal. 

To compare the final code (pipe.c) to the original code (choi.c from 

[5]) five test runs were conducted for both the compiler un-optimized and 

compiler-optimized versions of both programs.  The trial runs were conducted on 

an Intel chip, Linux based PC.  Table 1 shows the results. 

 From [5] From this work 

 choi.c choi.c 

(compiler 

optimized) 

pipe.c pipe.c 

(compiler 

optimized) 

Trail 1 46.81 6.860 0.05442 0.04699 

Trial 2 46.51 6.887 0.05445 0.04655 

Trial 3 46.50 6.852 0.05457 0.04640 

Trial 4 46.23 6.872 0.05470 0.04631 

Trial 5 46.49 6.824 0.05426 0.04661 

Average 46.51 6.859 .05448 .046572 

Table 1.   Time in seconds of trial runs. 

The optimized version of the code produced an 854X increase in speed 

over the original code.  The optimized version of the code that was compiled 

using an optimizing compiler produced a 147X increase in speed over the 

compiler-optimized version of the original code. 
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I. INTRODUCTION 

A. CHOI-WILLIAMS TIME-FREQUENCY DISTRIBUTION FOR 
ELECTRONIC WARFARE 

Low Probability of Intercept (LPI) emitters are the next evolution in radar 

technology and represent a growing threat to operating forces, civilian targets, 

and national security.  The development of techniques to automatically detect 

and classify LPI emitters is of extremely high importance.  Currently, US and 

allied electronic warfare (EW) systems cannot detect or classify most of the new 

types of LPI radar and communication systems that are currently being 

developed and deployed by adversary nations.  LPI systems utilize techniques 

such as frequency hopping and direct sequence spread spectrum to avoid 

detection.  As more and more of these systems are deployed by potential 

adversaries, U.S. and allied forces will be at greater and greater risk from high-

speed, sea-skimming, anti-ship cruise missiles and other weapons.  

There are currently several signal processing algorithms that are able to 

provide time-frequency representations of an incoming signal.  These signal 

processing techniques are useful tools in the detection and classification of LPI 

emitters; however, the long processing time it takes to use these techniques 

prevents these techniques from being used in a real time system.  The goal then 

is to decrease the processing time to compute these algorithms. 

The Choi-Williams distribution (CWD) [1] is one of Cohen’s generalized 

class of time-frequency distributions [2], which also includes the Wigner-Ville 

distribution and the spectrogram. Cohen’s time-frequency distributions have been 

the focus of extensive research and study.  The CWD uses an exponential kernel 

to reduce the magnitude of cross terms.  This is an improvement over the 

Wigner-Ville distribution, which simply has a kernel function of one and produces 

large cross terms that can obscure the real signal.  However, much of the 

research done to improve the speed of computation of the Wigner-Ville 

distribution is applicable to computing the CWD, as well as other time-frequency 
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distributions based on Cohen’s generalized class.  In particular the efficient 

algorithm developed by Boasash and Black [3], has been key in an effort to 

improve the speed of computation of the CWD using reconfigurable computers 

[4], [5].  Other research has been done to compute the CWD using parallel 

processing [6], [7].  Cardoso et al. [6], computed the CWD using a parallel 

implementation on a transputer platform with five processors.  They were able to 

compute the CWD for 1024 samples in 20.96 ms.  In [7], Barry used matrix 

manipulation techniques to provide an intuitive approach that, when combined 

with parallel processing, will improve the processing speed to allow real-time 

calculations of the CWD.   

Other efforts to improve the computation speed include the use of 

instantaneous frequency [8], and the fast Hartley transform [9] in lieu of a Fast 

Fourier Transform (FFT).  In [8], Jones and Boasash investigated the spread of a 

signal about its instantaneous frequency for several common time-frequency 

distributions.  Their efforts led to an adaptive algorithm that may be used to 

improve the time-frequency resolution of multicomponent signals.  In [9], 

Narayanan and Prabhu found that computing Wigner-Ville distribution using the 

Fast Hartley method was much faster than using an FFT method.  This due to 

considerably less multiplications and additions needed to compute the Fast 

Hartley method.   

Additional research in this field has been conducted in comparing the 

resolution of various time-frequency distributions [10], and the development of 

new tools for the interpretation and quantitative comparisons of high-resolution 

time-frequency distributions [11].  In [10], it was found that the Choi-Williams 

distribution is the most attractive for signals in which all components have 

constant frequency content.  In [11], Cunningham and Williams introduce some 

new tools for the interpretation and quantitative comparison of high-resolution 

time-frequency distributions. 

The CWD is notable in its ability to provide a clear, visual, time frequency 

picture of an LPI signal that is simple to classify.  The ability to compute the Choi-
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Williams algorithm in real- or near real-time will be a significant contribution in 

developing intercept receivers for LPI signal detection. 

B. RESEARCH OBJECTIVES 

The intent of this thesis work was to improve the speed with which the 

CWD can be computed on the SRC-6 reconfigurable supercomputer.  Some 

initial work on this has been done [4], with limited results.  The approach taken 

was to first study what computations were being made by the computer, then 

examine how to best format the computations to take advantage of the SRC-6’s 

reprogrammable hardware. 

C. APPROACH AND PRINCIPLE CONTRIBUTIONS 

In studying the algorithm used (an implementation of the Boasash 

algorithm), it was discovered that many multiplications by zero were taking place.  

The algorithm was rewritten to eliminate these multiplications.  Also, it was 

discovered that in the original algorithm, many of the same calculations were 

being done multiple times, such as computing of the weighting function (which 

never changes) N  times where N is the number of signal samples.   

Next, it was discovered that the conjugate symmetry of the distribution 

required only half of the distribution to be computed, then copied into the other 

half with a change of sign for the imaginary portion of the complex number.  

Eventually a method was found to fill the other half of the distribution with zeros.  

It was at this time that other ways of representing the kernel (weighting) function 

were investigated to see if using powers of two instead of the exponential 

function would allow easier computation.  This manipulation was determined to 

not be useful for the C programming language, but was included in this thesis 

because it could be useful when developing a hardware solution to these 

algorithms.   

When looking at three-dimensional plots of the kernel (weighting) function, 

it was noted that a very high proportion of the weights were near zero, and that 
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these weights contributed very little to the final result of the computation.  A “cut 

and slice” method was developed to test various ways of stripping out 

computations that, while taking as much time as the other computations, would 

make insignificant contributions to the final result of the distribution.  It was found 

that only a fraction of the computations need be computed to still produce 

excellent results.  These new modifications were coded into the original C code 

and very significant speed gains were made. 

It was also found that stripping out the low (near zero) weighted 

contributions to the sum would make it possible to reduce the number of 

computations needed to compute the FFT.  An algorithm was developed for the 

generalized Butterfly Machine (BFM), which reduced the layers of BFMs needed 

for the FFT.  This algorithm is directly applicable to the computation of zero-

padded FFTs.  The FFT from the benchmark code [5], written by Prof. 

Breitenbach, was modified with his permission to incorporate these new changes 

and the total computation time of the CWD was again significantly reduced. 

Next, an analysis was done to objectively determine the affects of 

eliminating the computation of near zero terms in the weighted summations.  As 

would be expected, there is a strong correlation between the number of 

computations eliminated and the departure in results from the unaltered CWD.  

However, in many cases, the time-frequency picture appears smoother in the 

CWD implemented using the “cut and slice” method than using the unaltered 

CWD.  For a signal that is changing frequencies with time (such as an LPI 

signal), contributions to the frequency at time t by a sample taken at time t + τ  

are increasingly irrelevant as τ  increases, and in fact degrade the time 

frequency picture. With further analysis it was found that the “cut and slice” 

method greatly reduces the contribution of these irrelevant samples—reducing 

clutter that obscures the true signal 

Finally, all of the modifications were coded into the C programming 

language in the most efficient manner as possible and the program was written 

such that it could be easily ported to a pipelined system where each new sample 
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produces a new CWD.  The new code was run using the Upperman code [5] as a 

benchmark.  The new code ran 854 times as fast as the old code when run using 

no compiler optimizations and 147 times faster when both sets of code were 

optimized by the compiler.  The optimized version of the code was able to 

compute the CWD for a 512 sample signal in 46.6 ms on an Intel chip, Linux 

based PC. 

The approximate factor of 6 increase in speed improvement for the 

compiler un-optimized version can be attributed to standard computer 

engineering coding principles such as loop unrolling, minimized decision making, 

and the reduction of redundant computations.  The new code is highly optimized 

to be ported to a hardware implementation of the CWD, as well as a 

reconfigurable computer such as the SRC-6.   

D. THESIS OUTLINE  

Chapter II of this thesis provides a step by step implementation of the 

Boasash algorithm, which is used to compute the CWD.  It provides a breakdown 

of the equations of the CWD, and provides a step by step breakdown of how the 

distribution can be computed using the Boasash algorithm.  It also provides 

graphical representations of the affects of each stage of the computation, providing a 

clear picture of what is happening to the signal at each stage of computation. 

Chapter III steps through several modifications that can be made to the 

algorithm.  Each section shows the math behind the modification, how each 

modification reduces the number of computations in the algorithm, and the result (if 

any) on the final result of the distribution. 

Chapter IV examines the cumulative effect of all the optimizations on the 

distribution, documenting both the error produced by the optimizations and the 

increase in processing speed achieved.  It is shown that, in addition to the 

hundred-fold increase in processing speed accomplished, the optimized 

computing algorithm actually produces a more accurate representation of the LPI 

signal.  Chapter V provides the conclusions that can be drawn from the work 

accomplished in this thesis.  
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II. COMPUTATION METHOD 

A. CHOI-WILLIAMS DISTRIBUTION 

The CWD is one of a class of time-frequency distributions introduced by 

Cohen.  In discrete form, the CWD can be expressed as 

 2( , ) 2 ( ) ( , ) j n
x

n
CWD W n S n e ωω

∞
−

=−∞

= ∑A A  (2.1) 

where 

 
2

2
( )
4 /

2

1( , ) ( ) ( ) *( )
4 /

nS n W e x n x n
n

μ
σ

μ

μ μ μ
π σ

−∞ −

=−∞

= + −∑
A

A  (2.2) 

and   W (μ) is a uniform window that has a value of one for the range   −M / 2  

through / 2M , and ( )W n is a uniform window that has a value of one for the 

range   −N / 2  through   N / 2  and is zero elsewhere [1].   

The above equations can be modified in order to tailor them to allow the 

use of a standard FFT (Fast Fourier Transform) in calculating the distribution.  

For the work described in this thesis, all examples will use data sets of N  

samples where N  is a power of two.  Setting the summation windows over n  

and μ  to go from   −N / 2  to   N / 2 −1, and having A  realize the same range, will 

cover all non-zero values in the distribution and will enable the use of the FFT.  

This will be clearer in the following analysis.   

Without loss of generality, the N  samples are labeled x −N
2( ) through 

x N
2 −1( ).  Equation (2.2) can now be expressed as  

 ( )
12

2

( , ) ( , , ) ,
N

N
S n n A n

μ

φ μ μ
−

=−

= ∑A A  (2.3) 

where 

 
  
A μ,n( )= x(μ + n)x *(μ − n)  (2.4) 
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and 

 
2

2
( )
4 /

2

1( , , )
4 /

nn e
n

μ
σφ μ

π σ

−
−

=
A

A  (2.5) 

Note that (2.5) is undefined for n = 0 .  Using the substitutions 

κ = μ
1

4n2 σ
⇒ dκ =

1
4n2 σ

dμ ⇒ dμ = 4n2 σdκ  

note that 

( )μ μ
κσ σ

μ μ κ

κ

κ

σ
μ μ κ

π σ π σ π σ

π

−∞ ∞ ∞− −
−

=−∞ =−∞ =−∞

∞
−

=

= =

=

∫ ∫ ∫

∫

A 2 2

22 2

2

2
4 4

2 2 2

0

41 1
4 4 4

1 2

n n n
e d e d e d

n n n

e dk

 

Using the identity ex2

dx =
π
2x=0

∞

∫  [12]: 

1
π

2 e−κ 2

dk
κ =0

∞

∫ =
2
π

π
2

= 1  

This shows that (2.5) is a Gaussian distribution over μ , which has a variance of 

zero for μ = A  when n = 0 .  Using the sifting property: 

 
1

( , , 0)
0

n
μ

φ μ
μ
=⎧

= = ⎨ ≠⎩

A
A

A
 

If we define the function '( , )S nA to be (this is a generalization of the 

equation used in the Boasash algorithm), 

( )

⎧ ≤ ≤ −
⎪
⎪= =⎨
⎪

− + ≤ ≤ −⎪⎩

A

A

A

( , ) 0 12
' , 0 2

( , ) 1 12

NS n n

NS n n

NS n N n N

 

In this way, A( , )S n  for n = −N
2  through N

2 −1  is mapped to ( )A' ,S n  for n = 0  

through  N −1 .  So (2.1) becomes: 
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1
2

0
( , ) 2 '( , )

N
j n

x
n

CWD S n e ωω
−

−

=

= ∑A A  

Finally, this representation can be modified to fit the standard Fast Fourier 

Transform (FFT) by making the substitution: ω = πk
N  thus 2.1 becomes 

 
1 2'

0
( , ) 2 ( , ) 0,1,..., 1

nN j k
N

x
n

kCWD S n e k N
N

ππ − −

=

= = −∑A A  (2.6) 

Note that transforming 2.1 into an FFT equation results in frequencies that 

are double what they initially were.  This effect can be nulled by simply halving 

the values of the frequency axis in the plotted representations of the signal. 

This section has shown how the discrete CWD is modified in order to 

compute the distribution for an N  sample window using an FFT.  The next 

section breaks down the Boasash algorithm into steps and shows the results of 

performing each step on an example input signal.  

B. COMPUTING THE DISTRIBUTION 

This section details how to compute the CWD using the equations in the 

previous section and shows an example of the resultant output for a Costas 

frequency hopping signal with a signal to noise ratio (SNR) of 0 dB  sampled 

N = 512  times (Figure 1).  The Appendix shows the details for the signals used in 

this thesis. 
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Figure 1. 512 samples of Costas signal (real portion). 

The algorithm used to compute the CWD for a signal sampled N  times 

can be expressed in the following manner.  First the N  samples are stored in an 

array.  This gives us ( )x k where 

 
sample at time k 12 2( )

0  

N Nk
x k

elsewhere

⎧ − ≤ ≤ −⎪= ⎨
⎪⎩

 (2.7) 

 

Next, the function 
  
A μ,n( ) can be written to an N  by N  array.  For 

illustration purposes, Figure 2 shows an example of how A μ,n( ) for an N = 8  

sample signal would be arrayed.   
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  μ \ n  0 1 2 3 -4 -3 -2 -1 

3  x(3)∙x(3)*  x(4)∙x(2)* x(5)∙x(1)* x(6)∙x(0)* x(‐1)∙x(7)* x(0)∙x(6)* x(1)∙x(5)* x(2)∙x(4)*

2 x(2)∙x(2)* x(3)∙x(1)* x(4)∙x(0)* x(5)∙x(‐1)* x(‐2)∙x(6)* x(‐1)∙x(5)* x(0)∙x(4)* x(1)∙x(3)*

1 x(1)∙x(1)* x(2)∙x(0)* x(3)∙x(‐1)* x(4)∙x(‐2)* x(‐3)∙x(5)* x(‐2)∙x(4)* X(‐1)∙x(3)* x(0)∙x(2)*
0 x(0)∙x(0)* x(1)∙x(‐1)* x(2)∙x(‐2)* x(3)∙x(‐3)* x(‐4)∙x(4)* x(‐3)∙x(3)* x(‐2)∙x(2)* x(‐1)∙x(1)*
-1 x(‐1)∙x(‐1)* x(0)∙x(‐2)* x(1)∙x(‐3)* x(2)∙x(‐4)* x(‐5)∙x(3)* x(‐4)∙x(2)* x(‐3)∙x(1)* x(‐2)∙x(0)*
-2 x(‐2)∙x(‐2)* x(‐1)∙x(‐3)* x(0)∙x(‐4)* x(1)∙x(‐5)* x(‐6)∙x(2)* x(‐5)∙x(1)* x(‐4)∙x(0)* x(‐3)∙x(‐1)*
-3 x(‐3)∙x(‐3)* x(‐2)∙x(‐4)* x(‐1)∙x(‐5)* x(0)∙x(‐6)* x(‐7)∙x(1)* x(‐6)∙x(0)* x(‐5)∙x(‐1)* x(‐4)∙x(‐2)*
-4 x(‐4)∙x(‐4)* x(‐3)∙x(‐5)* x(‐2)∙x(‐6)* x(‐1)∙x(‐7)* x(‐8)∙x(0)* x(‐7)∙x(‐1)* x(‐6)∙x(‐2)* x(‐5)∙x(‐3)*

Figure 2. A μ,n( ) for 8N =  

Note that in Figure 2, several of the boxes are grey.  These boxes are 

highlighted because one or both terms in the box falls outside of the sample 

window ( x(−4)  through x(3) ) and the result of the complex multiply will be zero.    

Figure 3 shows the absolute values of what becomes of our Costas signal 

once it has been processed in the same manner and mapped into a 512 by 512 

array.  Note, that
  
A μ,n( )is not dependent upon the parameter A .  This array will 

be used for all subsequent calculations and need only be computed once.  
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Figure 3. A μ,n( ) of Costas signal. 

 

The remaining steps in the process of computing the CWD will be 

repeated for all A .  For this example, 256 255− ≤ ≤A .  The following figures are 

used to illustrate the algorithm and are all computed with 0=A , a time in the 

middle of the sampled signal. 

First, a matrix is created to represent the kernel function ( ), ,nφ μ A  shown 

in (2.5).  Figure 4 shows the result for all μ  and n , with 1σ = , and 0=A .  The 

value of σ (sigma) is a constant, and will be discussed in more detail later.    
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Figure 4. Choi-Williams kernel function 0=A , N = 512 . 

 

Next, the array is weighted (multiplied) by the kernel function, producing 

an array that represents ( ) ( ), , ,n A nφ μ μA for all n  and μ  for the current iteration, 

of A .  Figure (5) shows the kernel function for A = 0 .  
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Figure 5. ( ) ( ), , ,n A nφ μ μA  for 0=A . 

Next, each column is summed producing a 1 x N array representing  

 

( ) ( )
12

2

'( , ) , , ,
N

N
S n n A n

μ

φ μ μ
−

=−

= ∑A A  

for 0=A .  Figure 6 shows the '( , )S nA  for 0=A  (the results of the summation 

over μ ). 
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Figure 6. ' ( , )S nA  for 0=A . 

 

Finally, an FFT is used to compute the frequency for the current A  and 

saved to an array that  represents  

1 2'

0
( , ) 2 ( , )

nN j k
N

x
n

kCWD S n e
N

ππ − −

=

= ∑A A  

for the current  A .  Figure 7 shows the result of the FFT for 0=A .  Figure 8 

depicts the entire time-frequency distribution for all A .  The red line shows the 

proper place in the time-frequency plot for the 0=A  calculation.  Notice that the 

time-frequency plot shows the frequency crossing the 0=A  line to be 4000, 

which reflects the frequency shown in Figure 7.  The time-frequency plot is a top 

down view of the results for all A , with colors mapped so that high returns show 

in red and low returns in blue. 
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Figure 7. The discrete CWD for 0=A . 

 
Figure 8. Yellow line shows location of CWD for 0=A  in the time-frequency 

distribution. 
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When this algorithm is computed for all A , the resulting array can be 

plotted representing frequency as a function of time.  The resulting plot, Figure 9, 

provides a picture of the signal that is simple to analyze.  The time-frequency plot 

is a top down view of the results for all A , with colors mapped so that high returns 

show in red and low returns in blue. 

 

Figure 9. Plot of Choi-Williams processed Costas signal,   SNR = 0dB . 

The algorithm expressed in this section was implemented in C code [4], 

[5].  The average time to complete this algorithm for an 512N =  sample was 

approximately 46 seconds.  This time was reduced to approximately 6 seconds 

using compiler optimizations.  Figure 10 shows a summary of this algorithm.  The 

next chapter steps through the optimizations that were used to accomplish this. 
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1. The signal is sampled  N times. 2. A μ,n( ) is computed. 

  

3. 
  
A μ,n( ) is weighted by the kernel 

function. 

4.  The result is summed over μ . 

  

5.  Then fed through an FFT. 6.  Steps 3 through 5 are computed for 

all A . 

Figure 10. A summary of the steps to compute the CWD. 
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III. OPTIMIZATIONS FOR FASTER COMPUTATION 

A. ELIMINATE COMPUTATIONS THAT WILL GIVE ZERO AS A RESULT 

Equation (2.7) states that all values for x(k)  outside the range 

  
− N

2 ≤ k ≤ N
2 −1 are equal to zero.  The resulting array in Figure 11 is 

functionally equivalent to the array in Figure 2.  This reduces the number of 

computations for the array by a factor of 2.  

 

  μ \ n  0 1 2 3 -4 -3 -2 -1 

3  x(3)∙x(3)*  0 0 0 0 0 0 0 
2 x(2)∙x(2)* x(3)∙x(1)* 0 0 0 0 0 x(1)∙x(3)*

1 x(1)∙x(1)* x(2)∙x(0)* x(3)∙x(‐1)* 0 0 0 X(‐1)∙x(3)* x(0)∙x(2)*
0 x(0)∙x(0)* x(1)∙x(‐1)* x(2)∙x(‐2)* x(3)∙x(‐3)* 0 x(‐3)∙x(3)* x(‐2)∙x(2)* x(‐1)∙x(1)*
-1 x(‐1)∙x(‐1)* x(0)∙x(‐2)* x(1)∙x(‐3)* x(2)∙x(‐4)* 0 x(‐4)∙x(2)* x(‐3)∙x(1)* x(‐2)∙x(0)*
-2 x(‐2)∙x(‐2)* x(‐1)∙x(‐3)* x(0)∙x(‐4)* 0 0 0 x(‐4)∙x(0)* x(‐3)∙x(‐1)*
-3 x(‐3)∙x(‐3)* x(‐2)∙x(‐4)* 0 0 0 0 0 x(‐4)∙x(‐2)*

-4 x(‐4)∙x(‐4)* 0 0 0 0 0 0 0 

Figure 11. A μ,n( ) for 8N = . 
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B. CONJUGATE SYMMETRY ADVANTAGE 

Analysis shows that 
  
A μ,−n( ) is equal to the conjugate of 

  
A μ,n( ).  That is, 

for   x1 = A+ jB  and   x2 = C + jD ; 

 

  

x1 ⋅ x2
∗ = A+ jB( )C − jD( )= AC + BD( )+ j BC − AD( )

= AC + BD( )− j BC − AD( )⎡⎣ ⎤⎦
∗
= A− jB( )C + jD( )⎡⎣ ⎤⎦

∗

= x2 ⋅ x1
∗( )∗

 

or 

 x1 ⋅ x2
∗ = x2 ⋅ x1

∗( )∗  (3.1) 

So 

A(μ,n) = A(μ,−n)⎡⎣ ⎤⎦
∗
 

for all   n ≠ 0 .  Also, note that the kernel function is strictly symmetric about  n  

2

2
( )
4 /

2

1( , , )
4 /

nn e
n

μ
σφ μ

π σ

−
−

=
A

A  

so 

( ) ( )φ μ φ μ= −A A, , , ,n n  

Therefore 

 ( ) ( ) ( ) ( )φ μ μ φ μ μ⎡ ⎤= − −⎣ ⎦A A
*

, , , , , ,n A n n A n  (3.2) 

Finally 

 
  

f (i)( )∗
i= x

y

∑ = f (i)( )
i= x

y

∑
⎡

⎣
⎢

⎤

⎦
⎥

∗

 (3.3) 

and 

 [ ]( , ) ( , )S n S n ∗− =A A  (3.4) 
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and 

 
''( , ) ( , )

for 1 12

S n S N n

N n N

∗
⎡ ⎤= −⎣ ⎦

+ ≤ ≤ −

A A
 (3.5) 

Since the array for '( , )S nA  is symmetrical in this way, only the values of 

'( , )S nA  for 
  
0 ≤ n ≤ N

2 −1 need be computed.  Then, the conjugates of the 

function for 
  
1≤ n ≤ N

2 −1 can be reverse ordered and used as the results of the 

function for 
  
N

2 +1≤ n ≤ N −1.  This reduces the calculations for '( , )S nA  by 

another factor of two (for large values of N ).  The only cost in computing time is 

the need to change the sign of the imaginary portion of the real number and copy 

the appropriate values into the array.  Figure 12 shows how   A(μ,n)  maps to 

  
A(μ,−n)⎡⎣ ⎤⎦

∗
.  

  μ \ n  0 1 2 3 -4 -3 -2 -1 

3  x(3)∙x(3)*         

2 x(2)∙x(2)* A      A* 
1 x(1)∙x(1)* B G    G* B* 
0 x(0)∙x(0)* C H K  K* H* C* 
-1 x(‐1)∙x(‐1)* D I L  L* I* D* 
-2 x(‐2)∙x(‐2)* E J    J* E* 
-3 x(‐3)∙x(‐3)* F      F* 
-4 x(‐4)∙x(‐4)*        

Figure 12. A μ,n( ) for 8N = . 
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The next optimization takes further advantage of the symmetric nature of 

the CWD and will increase the speed of computation with no deleterious effects.  

Note that (3.5) establishes the conjugate symmetricity of the function that is input 

into the FFT: 

''( , ) ( , )S n S N n
∗

⎡ ⎤= −⎣ ⎦A A  

for 
  
N

2 +1≤ n ≤ N −1.  Taking a closer look at (2.6): 

1 2'

0
( , ) 2 ( , )

nN j k
N

x
n

kCWD S n e
N

ππ − −

=

= ∑A A  

 

the summation representing the Fourier transform of the input array may be 

manipulated as follows.  The summation can be broken into two parts. 
11 122 2 2' ' '

0 0 2

( , ) ( , ) ( , )
Nn n nN Nj k j k j k

N N N

Nn n n

S n e S n e S n e
π π π

−− −− − −

= = =

= +∑ ∑ ∑A A A  

Taking further advantage of 3.5, the second term ends up being the conjugate of 

the first term, minus the result of the function for 0n = . 

1 122 2 2' ' '

12 2

1 2'

12

( , ) ( , ) ( , )2

0 ( , )

Nn nN Nj k j k j k
N N N

N Nn n

nN j k
N

Nn

NS n e S e S n e

S N n e

π π π

π

− −− − −

= = +

− −∗

= +

= +

= + −

∑ ∑

∑

A A A

A

 

Using the substitution 'n N n= −  
'1 12 2' '

1 ' 12 2

1 12 2( 2 2 ) 2' '

1 1

( , ) ( , ')

( , ) ( , )

n N nN j k j k
N N

N Nn n

N Nn nj k k j k
N N

n n

S N n e S n e

S n e S n e

π π

π π π

−− − −∗ ∗

= + = −

− −
− − +∗ ∗

= =

− =

= =

∑ ∑

∑ ∑

A A

A A

 

or 

*
11 22 2' '

12

( , ) ( , )
Nn nN j k j k

N N

N nn

S n e S n e
π π

−− − −

==

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

∑ ∑A A  
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Since the summing of a complex number with its conjugate will equal double the 

real portion of the number ( A + A* = 2 Re{A} ) and A'( ,0)S  will always be a real 

number, the total summation then becomes:  

 
11 22 2' ' '

0 0
( , ) 2 Re ( , ) ( ,0)

Nn nN j k j k
N N

n n
S n e S n e S

π π
−− − −

= =

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑A A A  (3.6) 

This result can be used in the following way.  A new function ( , )HS nA can be 

defined as: 

 

 

'1
2

'

( , ) 0

( , ) ( , ) 1 12
0

H

S n n
NS n S n n

elsewhere

⎧ =
⎪⎪= ≤ ≤ −⎨
⎪
⎪⎩

A

A A  (3.7) 

 

The CWD then becomes: 

 
1 2

0
( , ) 4 ( , )

nN j kH N
x

n

kCWD S n e
N

ππ − −

=

= ∑A A  (3.8) 

Using this equation, the exact same real results are produced, but only the left 

half of the input array need be computed.  The imaginary part of the original 

equation always, by definition, summed to zero.  In the new equation, the 

imaginary part is simply discarded.  For 12
N n N≤ ≤ − , all input values into the 

FFT are zero.  This manipulation was verified using MATLAB and the 

programming language C.  The algorithm was modified, as described above, and 

the exact same results were obtained. 

The next section discusses the “cut and slice” optimization, which 

eliminates the computation of near zero terms stemming from very small values 

in the kernel function. 
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C. CUT AND SLICE 

All optimizations made up to this point have had no affect on the final 

result of the computation.  This next optimization changes the final result of the 

computation.  An analysis of the changes affected by this optimization is provided 

in the next chapter. 

Another way to vastly improve the speed with which the distribution can be 

computed is to take advantage of the properties of the kernel.  Figures 13 

through 15 show that much of the kernel function appears to be near zero.   

 

 

Figure 13. Choi-Williams kernel function 0=A , N = 512 . 
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Figure 14. Choi-Williams kernel function 0=A , N = 512 . 

 

Figure 15. Choi-Williams kernel function 0=A , N = 512 . 
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Indeed, looking at the kernel function again,  
2

2
( )
4 /

2

1( , , )
4 /

nn e
n

μ
σφ μ

π σ

−
−

=
A

A  

it can be seen that the further away from ( ) 0μ − =A  and n = 0 , the closer the 

kernel function gets to zero.  Since any number multiplied by near zero will have 

little contribution to a summing operation, it can be reasoned that eliminating the 

calculations that will produce near zero results will reduce the computation time 

while having little affect on the final result.  An analysis was conducted to 

subjectively measure the degradation in results of reducing near zero terms and 

determine a threshold that does not degrade the results noticeably.  A subjective 

analysis was used instead of a deterministic one because the ability of this signal 

processing technique to provide a clear picture of the signal cannot be 

determined by any function.  

To conduct this analysis, the weighting kernel function was first “cut.”  The 

variable “cut” was defined as the amount of columns surrounding the peak of the 

kernel function that were used in the computation.  For example, a “cut” of 256 

would include the entire 512 columns.  A cut of 128 would include the first 128 

columns and the last 128 columns.  The variable “slice” was used to eliminate 

rows above and below the peak of the kernel function.  A “slice” of 64 would 

include the row with the peak of the weighting function and the 63 rows both 

above and below the peak of the kernel function.  First, the kernel was cut to find 

a threshold where the picture began to degrade.  As can be seen in Figure 16, 

the picture is degraded noticeably for cut < 32.  Note that, cut = 256, slice = 512, 

is identical to the original computation. 
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cut = 256, slice = 512;                       cut = 128; slice = 512 

 
cut = 64, slice = 512;                         cut = 32; slice = 512 

 
cut = 16, slice = 512;                      cut = 8; slice = 512 

Figure 16. Evaluation of the Cut method on the Costas frequency hopping 
signal. 
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Figure 17 shows a similar analysis for “slice”.  The subjective threshold for 

degradation was determined visually to be slice = 32. 

 
cut = 256  slice = 512                        cut = 256  slice = 256 

 
cut = 256  slice = 128                         cut = 256  slice = 64 

 
cut = 256  slice = 32                            cut = 256  slice = 16 

Figure 17. Evaluation of the Slice method on the Costas frequency hopping 
signal. 
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Next, cut and slice were conducted at the two thresholds at the same time 

to verify that the effects of the two optimizations do not have a multiplicative 

affect.  Figure 18 shows that reducing the computations to thresholds of 32 rows 

and 32 columns surrounding the peak of the kernel function produces an image 

that is sufficiently similar to the full version as to allow the picture of the signal to 

still be readable. 

 
Cut = 32 Slice = 32 

 
Cut = 256  Slice = 512 (Full Version) 

Figure 18. Comparison of reduced computation and full computation results. 
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Figure 18 shows the kernel function that has been cut and sliced.  Since 

all rows and columns more than 32 away from the peak of the function are zero, 

and therefore produce a result of zero when multiplied by A μ,n( ), these products 

are simply not computed.  In Figure 19, cut is the shorter axis, slice is the long 

axis.  Slice = 32  means 32 to either side of 0. 

 

 

Figure 19. The kernel function with Cut = 32, Slice = 32. 

The next section shows how the FFT algorithm can be modified to take 

advantage of all the zeroed values within the kernel function. 
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D. REDUCED FFT 

The next optimization takes advantage of all the zeros produced by the 

previous optimizations. This optimization increases the speed of the FFT 

computation by 9
5 .  Since, without this optimization, the FFT accounts for 

roughly half of the total computation time for the CWD, this is significant 

improvement. 

Figure 20 shows a common way to implement an FFT using   log2 n  layers 

of BFMs to implement an  n  point FFT.  Figure 20 shows an eight point FFT 

implemented with three layers of BFMs. 

 
Figure 20. 8-point FFT structure [From  13]. 

In  Figure 20, arrows joining at a circle indicate that two values are summed.  The 

various weighting terms shown represent the twiddle factors that are multiplied 

where ( )π= −exp 2k
NW j k N .  The negative ones indicate that the arrow is 

multiplied by a negative one.  Figure 21 shows how the algorithm is altered when 

all but the first two inputs (x(0) and x(1)) are made equal to zero. 
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Figure 21. Modified FFT [modified From  13]. 

Notice that the first two layers of BFMs can be completely skipped and the inputs 

can be fed directly into the third layer.  This same affect works on FFTs of this 

type for all sizes with the following conditions and effects: 

 

1. For any FFT calculated for n  inputs where log2 n is a whole number. 

2. If every input following the first m values is equal to 0. 

3. And 2log m is a whole number. 

4. Then the m inputs can be fed directly into the log2

n
m
+1

⎛
⎝⎜

⎞
⎠⎟

th  BFM layer of 

the  n point FFT. 

5. Each input will be fed into n
m

adjacent inputs. 

6. And the order of the inputs is in the order of the values represented by the 

reversed order bit representations of the values zero through 

  m −1represented in   log2 m bits. 
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For the example above: 

1.    n = 8 log2 n = 3  

2. Every input past the first two inputs is zero. 

3.   m = 2 log2 m = 1    

4. The first two values are fed directly into the log2

8
2
+1= 3rd layer of the 8-

point FFT. 

5. Each input is fed into 
 

8
2
= 4 adjacent inputs. 

6. The values zero through 2 −1= 1  are represented in log2 2 = 1  bits.  A bit 

reversal is conducted (trivial in this case), and the order of input is 

established by these reverse bit values (again in this case no reordering is 

required). 

 

For the purposes of implementing the above optimization for our 512 input FFT 

with a “cut” of 32, limiting the input to only 32 values: 

1.    n = 512 log2 n = 9  

2. Every input past the first 32 inputs is zero. 

3.   m = 32 log2 m = 5  

4. The first 32 values are fed directly into the log2

512
32

−1= 5th layer of a 512 

point FFT. 

5. Each input is fed into 
 

512
32

= 16 adjacent inputs. 

6. The values zero though 31 are represented in 5 bits.  A bit reversal is 

conducted and the order of inputs is established by these reverse bit 

values (see Table 2). 
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0-31 Reversed 

bit 

Order of 

inputs 

0 00000 0 

1 10000 16 

2 01000 8 

3 11000 24 

4 00100 4 

… … … 

31 11111 31 

Table 2.   Order of inputs. 

 
The next section shows an optimization that might be beneficial if the 

CWD were computed using a reconfigurable computer. 

E. AN OPTIMIZATION NOT REALIZED 

The next optimization was not realized, due to the fact that implementation 

using C code would probably provide a negligible, if any, increase in speed of 

computation.  It is, however, an interesting optimization in that it uses powers of 

two, instead of the exponential function, making it a potentially powerful 

optimization to use with reconfigurable computers.  Also, this section takes a 

closer look at the mysterious parameter known only as “sigma”.   

From (2.5) we start with ( , , )nφ μ A : 

 
2

2
( )
4 /

2

1( , , )
4 /

nn e
n

μ
σφ μ

π σ

−
−

=
A

A  

 

Using the identity 

2log2 ( x ) = x  

the following simplification can be made 
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then using the identity 

logx yz = z logx y  

the following simplification can be made 
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then using the identity 

logx y( )= logz y( )
logz x( ) 

the same equation can be represented as follows: 

( ) ( )
( ) ( )22

2 22

ln
log

ln(2)441 12 2
4 4

e
e

nn

n n

μ σμ σσ σ
π π

−−
−−

=
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or finally 

( )22

22
( )

4ln(2)4 /
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1 1( , , ) 2
44 /

nnn e
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μ σμ
σ σφ μ

ππ σ

−− −−
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 Before proceeding further, let us take a closer look at σ .  Sigma changes 

the distribution of the kernel function.  Up until this point, all computations in this 

thesis have been done with σ = 1 .  Figures 22 through 29 represent the kernel 

function for various values of σ  and its affect upon the processing result of the 

CWD, using our running example of a Costas frequency hopping signal with 

 SNR = 0dB . 

 

 
Figure 22. 0.01σ = . 

 

 
Figure 23. 0.1σ = . 
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Figure 24. σ = 1. 

 
Figure 25. σ = 2.77258872224 = 4ln(2) . 

 
Figure 26. 10σ = . 
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Figure 27. 100σ = . 

 
Figure 28. 1000σ = . 

 
Figure 29. 10,000σ = . 
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Notice that in Figure 24 for σ = 2.77258872224 = 4ln(2)  (a constant), the 

signal representation is good and the kernel function becomes: 

 
( )2 2

2 4ln(2)1 0.220635600153( , , ) 2 2
4

nnn
n n

μ σ μσφ μ
π

− −⎛ ⎞− −⎜ ⎟
⎝ ⎠= =

A A

A  (3.9) 

 
Note that (3.9) provides the mathematically same results as (2.5) and Figure 25 

with 2.77258872224σ = , using the original kernel function: 

  

 
2

2
( )
4 /

2

1( , , )
4 /

nn e
n

μ
σφ μ

π σ

−
−

=
A

A  

Figure 30 shows that if we round all values of the exponent term, 

( )( )μ − A
2

n , to the nearest integer, we get the following kernel function and 

results for our running example of the Costas signal.  Figure 31 shows a close-up 

of the modified kernel function with its exponent rounded.  Notice that the plot of 

the rounded kernel function is not as smooth as the unrounded kernel function, 

but that it still retains the same overall shape and characteristics. 

 

 
Figure 30. Rounded kernel function, σ = 4 ln 2( ). 
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Figure 31. Comparison of the rounded kernel function, σ = 4 ln 2( ), with the 

unrounded kernel function. 

Although the effect of rounding the kernel function to the nearest power or 

two is noticeable, the effects upon the output distribution are negligible.  Figure 

32 compares the two outputs generated for Figures 25 and 30.  It is difficult to tell 

the difference between the two. 

 
Figure 32. Comparing rounded to unrounded version, σ = 4 ln 2( ). 
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If the new rounded version is used, for every '( , )S nA  computed, 

( ) ( )' 1, ' , 2S n S n α+ =A A  where α  is some integer (equally applicable to 

( ) ( ) α+ =A A1, , 2H HS n S n ). If IEEE floating point is used to represent the number, 

then A μ,n( ) need only be weighted once by multiplying it by a kernel function.  

Since the rest of the weighting kernel functions in a column are related by some 

power of two, the mantissa of the floating point representation will remain the 

same for all other weights.  The other weights can be calculated by adding or 

subtracting to the eight-bit exponent of the floating point representation.  Since 

there is no such single operation in the C programming language, to utilize this 

method would involve masking out the eight-bit exponent, modifying it, and then 

placing it back into the number.  The benefits of this multiple instruction operation 

over simply doing the multiplications are questionable.  However, if a 

reconfigurable computer is used to perform the operation, there is the potential 

for substantial savings in computation time.  

This is the last optimization examined.  The next chapter takes a closer 

look at the effects of the cut and slice optimization, detailed in Section C of this 

chapter, and shows the overall improvement in computation speed attained by 

utilizing the optimizations. 
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IV. ERROR AND TIMING ANALYSIS 

A. THE (NOT SO) DELETERIOUS EFFECTS OF CUT AND SLICE 

In establishing the threshold for the “cut and slice” optimization, the author 

used a subjective approach to determine how small the kernel function could be 

cut and sliced without degrading the quality of the results.  This section conducts 

an objective analysis to show the effect of the cut and slice operation.  Also, this 

section shows the effects of the optimization on some common LPI signals to 

determine the effect of the optimization on a range of signals at various signal to 

noise (SNR) ratios. 

Five common LPI signals are analyzed—each one at three different levels 

of SNR:  signal only (SNR = ∞ dB ), SNR = 0 dB  and SNR = −6 dB .  Each of the 

15 example signals were measured at cut = slice = 128, 64, 32, 16, and 8 (see 

cut and slice section in the previous chapter for explanation of levels) and 

compared to the results of the unaltered version of the CWD of the same signal. 

 

 Error = median
CWD − CS

CWD
⎡

⎣
⎢

⎤

⎦
⎥  (4.1) 

 
To compare each computation result to the original version, the absolute 

value of the difference between the cut and slice (CS) version and the original 

computation are measured at each of the 512 x 512 points in the array, and then 

they are divided by the average value of all the points in the original array.  Then 

the median is taken (4.1). 
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CWD 
 

 

128 
 

 

64 
 

 

32 
 

 

16 
 

 

8 
 

Figure 33. Figure Map 

The results of the analysis are summarized in Figures 34 through 48 

below.  In each of the figures, there are six plots.  The top left plot shows the 

result of the unmodified version of the Choi-Williams computation.  The plot to its 

right is the result of the computation with cut = slice =128, which is the number of 

columns and rows surrounding the peak of the kernel function, ( )φ μ = =A, 0n .  

The plot below the original is for cut = slice = 64, and to that one’s right cut = 

slice = 32.  The two plots on the bottom are for cut = slice = 16, and cut = slice = 

8.  Figure 33 above summarizes the layout.  At the bottom of each set of time-

frequency plots is a stem plot of the Error measured for each of the cut and slice 

computations compared to the original. 

Note that cut = slice = 32 was the threshold established for optimizing the 

computation using the subjective approach and is the chosen threshold to use for 

the optimized version of the algorithm. 

The five signals examined are: Frequency Modulated Carrier Wave 

(FMCW), Polyphase 1 (P1), Polytime 1 (PT1), Costas Frequency Hopping 

(Costas), and Frequency Shift Keying/Phase Shift Keying (FSK/PSK). 
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Figure 34. Cut and Slice results for FMCW, signal only, including a stem plot 
of the error when compared to the original (top left). 
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Figure 35. Cut and Slice results for FMCW, 0 dB , including a stem plot of the 

error when compared to the original (top left). 
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Figure 36. Cut and Slice results for FMCW, −6 dB , including a stem plot of the 

error when compared to the original (top left). 
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Figure 37. Cut and Slice results for P1, signal only, including a stem plot of the 

error when compared to the original (top left). 
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Figure 38. Cut and Slice results for P1, 0 dB , including a stem plot of the error 

when compared to the original (top left). 
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Figure 39. Cut and Slice results for P1, −6 dB , including a stem plot of the 

error when compared to the original (top left). 
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Figure 40. Cut and Slice results for PT1, signal only, including a stem plot of 

the error when compared to the original (top left). 
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Figure 41. Cut and Slice results for PT1, 0 dB , including a stem plot of the 

error when compared to the original (top left). 
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Figure 42. Cut and Slice results for PT1, −6 dB , including a stem plot of the 

error when compared to the original (top left). 
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Figure 43. Cut and Slice results for Costas, signal only, including a stem plot 

of the error when compared to the original (top left). 
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Figure 44. Cut and Slice results for Costas, 0 dB , including a stem plot of the 

error when compared to the original (top left). 
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Figure 45. Cut and Slice results for Costas, −6 dB , including a stem plot of the 

error when compared to the original (top left). 
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Figure 46. Cut and Slice results for FSK/PSK, signal only, including a stem 

plot of the error when compared to the original (top left). 
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Figure 47. Cut and Slice results for FSK/PSK, 0 dB , including a stem plot of 

the error when compared to the original (top left). 



 59

 

 
Figure 48. Cut and Slice results for FSK/PSK, −6 dB , including a stem plot of 

the error when compared to the original (top left). 



 60

As would be expected, in all cases in the above error plots, the more the 

kernel function was cut and sliced down, the more error was introduced (using 

the original distribution as the benchmark).  Also, as would be hoped, the 

distribution for cut = slice = 32 picture of the signal was not degraded 

significantly.  Interestingly, in many cases, the picture actually looks clearer.  For 

example, note in Figure 49 that for the FMCW, signal only, the optimized version 

(for the rest of this thesis, optimized refers to the cut = slice = 32 version, and 

original refers to the un-optimized version of the distribution) looks much clearer 

than the original.  If this is a signal only representation, why are there horizontal 

lines across the picture? 

 
Figure 49. Original vs. Optimized FMCW, signal only. 

A horizontal line across the plot indicates that that frequency is present 

throughout the entire sample.  Figure 50 shows the kernel function for times 

 A = 0 and  A = 200 .  Note, that for low values of n  (the columns on the left side), 

the Gaussian distribution has a low variance, but that at high values of n , the 

Gaussian distribution quickly approaches being completely flat, giving near equal 

representation to all values in the column. 
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Figure 50. ( )φ μ A, , n  for A = 0 and A = 200 . 

Figure 51 shows that 
  
A μ,n( ) (for N = 8 ), it can also be seen that for higher 

values of n , the column represents data points multiplied together that are more 

distant from each other in time. 

  μ \ n  0 1 2 3 -4 -3 -2 -1 

3  x(3)∙x(3)*  0 0 0 0 0 0 0 
2 x(2)∙x(2)* x(3)∙x(1)* 0 0 0 0 0 x(1)∙x(3)*

1 x(1)∙x(1)* x(2)∙x(0)* x(3)∙x(‐1)* 0 0 0 X(‐1)∙x(3)* x(0)∙x(2)*
0 x(0)∙x(0)* x(1)∙x(‐1)* x(2)∙x(‐2)* x(3)∙x(‐3)* 0 x(‐3)∙x(3)* x(‐2)∙x(2)* x(‐1)∙x(1)*
-1 x(‐1)∙x(‐1)* x(0)∙x(‐2)* x(1)∙x(‐3)* x(2)∙x(‐4)* 0 x(‐4)∙x(2)* x(‐3)∙x(1)* x(‐2)∙x(0)*
-2 x(‐2)∙x(‐2)* x(‐1)∙x(‐3)* x(0)∙x(‐4)* 0 0 0 x(‐4)∙x(0)* x(‐3)∙x(‐1)*
-3 x(‐3)∙x(‐3)* x(‐2)∙x(‐4)* 0 0 0 0 0 x(‐4)∙x(‐2)*

-4 x(‐4)∙x(‐4)* 0 0 0 0 0 0 0 

Figure 51. A μ,n( ) for N = 8 . 
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Therefore, for higher instances of n , the summation over μ  will provide 

near equal representation for all samples multiplied by another sample that is 2n  

in distance away—for all cases of A . 

Figure 52 shows the original FMCW, signal only, plot with the distributions 

for  A = 0  and  A = 200  highlighted in yellow.  Figure 53 shows ( , )HS nA  for A = 0  

and  A = 200 .  Figure 54 shows a close up of the same plot for 200 ≤ n ≤ 250 .  

Figure 55 shows CWD for  A = 0  and A = 200 . 

 
Figure 52. Highlighted original FMCW, signal only. 

 
Figure 53. ( , )HS nA for A = 0 and A = 200  for unaltered CWD. 
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Figure 54. Close up of ( , )HS nA for A = 0 and A = 200  for unaltered CWD. 

 

 

Figure 55. ( , )xCWD ωA  for A = 0  and A = 200  for unaltered CWD. 
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Note, that as expected from the previous analysis, ( , )HS nA  produces 

nearly identical results for high values of n  and highly disparate values of  A , and 

that these results are derived from samples multiplied by other samples that are 

2n  in distance away from each other.  This is certainly not desired and is the 

cause of the horizontal lines across the original distribution.  Figures 56 through 

59 below conduct the same analysis for the optimized version of the distribution. 

Figure 56 shows the optimized kernel function for times A = 0  and  A = 200 .  

Figure 57 shows the optimized CWD for the FMCW, signal only, plot with the 

distributions for  A = 0  and  A = 200  highlighted in yellow.  Figure 58 shows 

( , )HS nA  for  A = 0  and  A = 200 .  Finally, Figure 59 shows the optimized CWD for 

 A = 0  and  A = 200 . 

 

 
Figure 56. ( )φ μ A, , n  for A = 0 and A = 200 , cut = slice = 32. 
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Figure 57. Highlighted optimized FMCW, signal only. 

 

 
Figure 58. ( , )HS nA for A = 0 and A = 200 , cut = slice = 32. 
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Figure 59. ( , )xCWD ωA  for A = 0 and A = 200 , cut = slice = 32. 

Figure 60 shows three-dimensional representations of the CWD for both 

the original and optimized versions. 
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Figure 60. Original and Optimized FMCW, signal only. 
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It can be concluded from this analysis that not only is the optimized 

version faster and better looking, it portrays a more accurate depiction of the 

signal as well. 

B. TIMING RESULTS 

Coding of the optimized version of the algorithm was conducted 

incrementally.  As each optimization was developed, it was verified using 

MATLAB to empirically determine that the math was correct, and then the 

optimizations were applied to the code in [5].  In comparison to the compiler un-

optimized version of the original code, using the symmetry optimization yielded 

an approximately tenfold increase in speed.  The cut and slice optimization 

yielded another approximately tenfold increase in speed.  With the permission of 

Professor Breitenbach, the recursive FFT function authored by Professor 

Breitenbach used in the original code was unrolled, placed within the code itself 

and optimized in the same manner as described in the FFT optimization section 

(Chapter II), increasing the speed of computation by approximately another 

twofold.  Other speed increases were realized by reducing redundant 

computations.  For instance, in the original code, the kernel function is essentially 

recalculated N times.  In the new code, the windowed (cut and sliced) kernel 

function is pre-calculated before the timing starts.  The original code was also de-

parameterized (the original was built to perform the distribution for any N  where 

N  is a power of two) in order to wring out every possible speed increase.   

Finally, it made sense to pipeline the code.  In the original algorithm, it was 

necessary to use all data samples for each and every iteration of  A , whereas for 

the optimized version, each iteration depends only on samples near in time to A .  

In the final pipelined version, the arrays are preloaded with the samples needed 

to compute the first computation ( A = −256 ), a new sample is written into the 

array over the oldest sample in the array, and the computation is redone.  The 

priming of the pipeline before timing starts is cheating a little bit.  However, it 

should only account for 1 / 512 th of the speed increase over the original code.  
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The pipelined version was developed with real, pipelined hardware in mind.  The 

final code should be easy to port to the SRC-6 supercomputer or other high 

performance computing hardware. 

To compare the final code (pipe.c) to the original code (choi.c from 

[5]) five test runs were conducted for both the compiler un-optimized and 

compiler-optimized versions of both programs.  The compiler used was icc, and 

the optimizations used were:   

-O3 –tpp7 –xW –align –Zp16 –ipo –static 

The trial runs were conducted on an Intel chip, Linux based PC.  Table 3  shows 

the results. 

 

 From [5] From this work 

 choi.c choi.c 

(compiler 

optimized) 

pipe.c pipe.c 

(compiler 

optimized) 

Trail 1 46.81 6.860 0.05442 0.04699 

Trial 2 46.51 6.887 0.05445 0.04655 

Trial 3 46.50 6.852 0.05457 0.04640 

Trial 4 46.23 6.872 0.05470 0.04631 

Trial 5 46.49 6.824 0.05426 0.04661 

Average 46.51 6.859 .05448 .046572 

Table 3.   Time in seconds of trial runs. 

 
The optimized version of the code produced an 854X increase in speed 

over the original code.  The optimized version of the code compiled with an 

optimizing compiler produced a 147X increase in speed over the compiler 

original version of the code compiled with an optimizing compiler. 
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V. CONCLUSION 

A. BACKGROUND 

The objective of this thesis was to improve the speed at which the CWD 

could be computed on the SRC-6 reconfigurable supercomputer.  Optimizing the 

algorithm, prior to porting the code to the SRC-6, yielded enough work in both 

quantity and level of difficulty to stand alone as the subject of this thesis.  Also, 

the optimizations developed in this thesis are applicable to any implementation of 

the CWD. 

B. RESULTS 

By exploiting the symmetry of the CWD and eliminating the computation of 

near zero terms, dramatic gains in computation speed were achieved.  Further 

gains were achieved by modifying the FFT to take advantage of zero terms.  The 

optimizations altered the results of the time-frequency distribution; however, the 

altered results yield a more accurate time-frequency representation of the signal.  

The optimized algorithm developed in this thesis is a significant step towards 

developing a system that can identify and classify LPI signals in real time.  This 

algorithm is not platform specific, since developed using pure Mathematics.  It 

can be used to realize faster Choi-Williams calculations, with a better result, on 

any platform. 

C. RECOMMENDATIONS FOR FUTURE WORK 

It is recommended that the effort to port this algorithm to the SRC-6 or 

some other FPGA realization be continued. Particularly, the “Optimization Not 

Realized” from Chapter III should yield a significant increase in speed if 

implemented using an FPGA. 
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APPENDIX. LPI SIGNAL GENERATION 

The example signals used for this thesis were taken from reference [14].  

There were several signals generated by the LPI Toolbox used in this thesis. 

Each signal is described in detail below. Each signal was generated with a signal 

to noise ratio of 0 dB. The addition of noise generates more realistic results 

without overwhelming the graph. 

1)  F_1_7_500_30_s.mat: FMCW signal with a ∞ dB  SNR 

2) F_1_7_500_30_0.mat: FMCW signal with a 0 dB  SNR 

3)  F_1_7_500_30_-6.mat: FMCW signal with a −6 dB  SNR 

4) P1_1_7_8_1_s.mat: P1 signal with a ∞ dB  SNR 

5)  P1_1_7_8_1_0.mat: P1 signal with a 0 dB  SNR 

6) P1_1_7_8_1_-6.mat: P1 signal with a −6 dB  SNR 

7)  PT1_1_7_2_4_s.mat: PT1 signal with a ∞ dB  SNR 

8)  PT1_1_7_2_4_0.mat: PT1 signal with a 0 dB  SNR 

9)  PT1_1_7_2_4_-6.mat: PT1 signal with a −6 dB  SNR 

10) C_1_15_5000_s.mat: Costas signal with a ∞ dB  SNR 

11) C_1_15_5000_0.mat: Costas signal with a 0 dB  SNR 

12) C_1_15_5000_-6.mat: Costas signal with a −6 dB  SNR 

13)  FSK_PSK_Costas_5_s.mat: FSK/PSK signal with a ∞ dB  SNR 

14)  FSK_PSK_Costas_5_0.mat: FSK/PSK signal with a 0 dB  SNR 

15)  FSK_PSK_Costas_5_-6.mat: FSK/PSK signal with a −6 dB  SNR 

More information on the use of the LPI Toolbox and the different LPI signals is 

given in [4]. 
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To use these signals in the C programming environment, they were converted to 

text files using the following code [5], [14]. 

 
%% %%%%%%%%%%%%%%%%%%%%% FMCW Code %%%%%%%%%%%%%%%%%%% %% 
load H:\Thesis\Choi\Test_signals\F_1_7_250_20_0.mat 
sig1 = [I Q]; 
save S:\thesis\Test_signals_txt\F_1_7_250_20_0.txt sig1 -ascii -double 
  
%% %%%%%%%%%%%%%%%%%%%%% Frank Code %%%%%%%%%%%%%%%%%%% %% 
load H:\Thesis\Choi\Test_signals\FR_1_7_4_1_0.mat 
sig2 = [I Q]; 
save S:\thesis\Test_signals_txt\FR_1_7_4_1_0.txt sig2 -ascii -double 
  
%% %%%%%%%%%%%%%%%%%%% Costas Code %%%%%%%%%%%%%%%%%%% %% 
load H:\Thesis\Choi\Test_signals\C_1_15_5000_0.mat 
sig3 = [I Q]; 
save S:\thesis\Test_signals_txt\C_1_15_5000_0.txt sig3 -ascii -double 
  
%% %%%%%%%%%%%%%%% FSK/PSK Costas Code %%%%%%%%%%%%%%%% %% 
load H:\Thesis\Choi\Test_signals\FSK_PSK_Costas_15_5_0.mat 
sig4 = [I Q]; 
save S:\thesis\Test_signals_txt\FSK_PSK_Costas_15_5_0.txt sig4 -ascii  
        -double 
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